How to draw a rough sketch of the parametric curve $\begin{aligned} & x=f(t) \\ & y=g(t)\end{aligned}$

using $\begin{aligned} & x=3+2 t-t^{2} \\ & y=t^{2}+2 t-8\end{aligned}, \quad t \in(-\infty, \infty)$ as an example
[1] Sketch the graphs $x=f(t)$ and $y=g(t)$ on two separate sets of axes.
(On both graphs, the horizontal axis is t.)

$$
\begin{array}{ll}
x=3+2 t-t^{2}=(3-t)(1+t) & y=t^{2}+2 t-8=(t-2)(t+4) \\
\text { upside down parabola } & \text { upright parabola } \\
t \text {-intercepts -1 and } 3 & t \text {-intercepts }-4 \text { and } 2
\end{array}
$$

[2] Find the t-values at which either graph changes general direction (changes from either increasing, constant or decreasing to another general direction) or makes a sudden discontinuous jump.

$$
\begin{array}{ll}
x=3+2 t-t^{2} & y=t^{2}+2 t-8 \\
\text { changes from increasing } & \text { changes from decreasing } \\
\text { to decreasing at } t=1 & \text { to increasing at } t=-1
\end{array}
$$

[3] On a number line for the domain of the parametric equations, mark down the values of t found in step [2].
domain of the parametric equations: $t \in(-\infty, \infty)$
number line:

[4] For each interval that the number line is subdivided into in step [3],
determine whether x and y are increasing or decreasing from the graphs in step [2].
Determine the direction the curve is oriented by noting that
if x is increasing, the curve is going to the right, if x is decreasing, the curve is going to the left, if y is increasing, the curve is going upwards, and if y is decreasing, the curve is going downwards.
$t<-1: \quad x$ is increasing, y is decreasing, the curve is going to the right and downwards
$-1<t<1$: $\quad x$ is increasing, y is increasing, the curve is going to the right and upwards
$t>1: \quad x$ is decreasing, y is increasing, the curve is going to the left and upwards
[5] At the values of t found in step [2], find the exact co-ordinates of the graph using the parametric equations. At the endpoints of the domain, find general approximations of the co-ordinates of the graph (eg. using " $\rightarrow-\infty$ ", " $\rightarrow \infty$ ", "just above 0 ", "just below 0 " etc.).
Note that
$x=0$ means "on the y-axis" (ie. y-intercept)
x just above 0 means "just to the right of the y-axis"
x just below 0 means "just to the left of the y-axis"
$x \rightarrow-\infty$ means "the left side of the grid"
$y=0$ means "on the x-axis" (ie. x-intercept)
y just above 0 means "just above the x-axis"
y just below 0 means "just below the x-axis"
$x \rightarrow \infty$ means "the right side of the grid"
$y \rightarrow-\infty$ means "the bottom of the grid" $y \rightarrow \infty$ means "the top of the grid"

$$
\begin{array}{ll}
t \rightarrow-\infty: & (x, y) \rightarrow(-\infty, \infty), \text { the curve is starting from the top left corner of the grid } \\
t=-1: & (x, y)=(0,-9) \\
t=1: & (x, y)=(4,-5) \\
t \rightarrow \infty: & (x, y) \rightarrow(-\infty, \infty), \text { the curve is going off the top left corner of the grid }
\end{array}
$$

[6] Combine the points in step [5] with the directions in step [4] to draw a rough sketch of the curve.

NOTE: When both x and y are going towards ∞ or $-\infty$,
it is useful to notice which variable has the larger absolute value.
If x has the larger absolute value, the graph is closer to the x-axis than the y-axis.
If y has the larger absolute value, the graph is closer to the y-axis than the x-axis.

